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Abstract We consider the model of invasion prevention in a system of lakes that are con-
nected via traffic of recreational boats. It is shown that in presence of an Allee effect,
the general optimal control problem can be reduced to a significantly simpler stationary
optimization problem of optimal invasion stopping. We consider possible values of model
parameters for zebra mussels. The general N -lake control problem has to be solved nu-
merically, and we show a number of typical features of solutions: distribution of control
efforts in space and optimal stopping configurations related with the clusters in lake con-
nection structure.

Keywords Biological invasions · Spatial control · Optimal control · Aquatic invaders ·
Zebra mussels

1. Introduction

The problem of controlling invasive species is very important for many regions in the
world (Williamson, 1996). Ecological and economic impact of these species has been
analyzed in a number of publications, see (Perrings et al., 2002; Kolar and Lodge, 2002)
and references therein. Slowing down or stopping the invaders dispersal may reduce the
corresponding impact. In this paper, we consider a related model problem of controlling
aquatic invaders.

For a number of invaders in the North America lakes, the major way of spreading
is transportation with boating and fishing equipment (Johnson et al., 2001). This imme-
diately suggests a way to slow down or stop the spreading by washing the equipment
(Ontario Ministry of Natural Resources web site, 2003). We assume that percentage of
invader organisms killed during treatment depends on the amount of money given for
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treatment of a single boat. To compare treatment expenses with the losses due to inva-
sion, we can perform cost-benefit analysis. This brings us into the framework of bioeco-
nomics and economic problems of cost-benefits analysis and optimal control (Clark, 1990;
Olson and Roy, 2002).

To set up a bioeconomics problem, we need three basic components. First, we need a
model for the invader population within each lake. To keep the model tractable, we assume
that each lake has a certain carrying capacity and, once the invader has been introduced
in sufficient quantity, it grows and eventually reaches maximum. Then the lake becomes
invaded and is a source of the invader for secondary invasions.

Second, we need information about boat transfer between the lakes, which causes the
invader flow between the lakes. This can be described by the connectivity matrix, showing
the intensity of the boat exchange between the lakes. Often the connection matrix can
be approximated by so-called gravity models (Sen and Smith, 1995), which have been
successfully applied to the problem of lake invasions by a number of authors (Buchan and
Padilla, 1999; Bossenbroek et al., 2001; MacIsaac et al., 2004).

Third, we need a model of boat treatment at the checkpoints. In this paper, we use
one proposed in (Potapov et al., 2007); with exponential dependence of the treatment
efficiency on the finances allocated.

Note that complexity of the optimal control problem grows dramatically with the num-
ber of lakes. Even with 3–5 lakes, its complete analysis becomes practically impossible.
However, for ecosystem valuation and determining the invasion costs, infinite-horizon
problems are often used (Brock and Xepapadeas, 2003; Olson and Roy, 2002). An opti-
mal solution for such problems should converge to a steady state (Kamien and Schwartz,
1991). If convergence to the steady state is fast compared to the typical “discounting time”
ρ−1

D (inverse of discounting rate), then the steady state can contribute mostly to the overall
cost/benefit analysis. This allows us to replace the analysis of a general control problem
by analysis of the steady states. It is reasonable to assume that under no control, all the
lakes eventually are invaded, and there may be only two steady states, uninvaded and fully
invaded. The control may allow to stop the invader somewhere in the middle. Then the
problem of optimal controls becomes one of optimal invasion stopping.

Here, we must note that the control cannot be perfect. Even if it were possible to make
the number of invaders spread by boats equal to zero, there may be other mechanisms of
spread. For example, zebra mussels can spread along with waterfowls with a very small
probability (Johnson and Carlton, 1996). Therefore, the problem of invasion stopping may
be solvable only if there is a critical population size, or equivalently, a critical invader flow,
below which the invader population cannot establish. This means that there must be Allee
effect for the invader (Courchamp et al., 1999; Taylor and Hastings, 2005; Veit and Lewis,
1996), and we shall consider the class of models satisfying this condition.

The importance of Allee effect for spatio-temporal dynamics of biological invasions
has been shown in (Lewis and Kareiva, 1993; Keitt et al., 2001; Hastings et al., 2005). It
appears that in presence of the effect, the invasion front can move slower, stop, or even
reverse its direction. In the latter case, the invader eventually goes extinct. Population
dynamics at the invasion front becomes a competition between local extinction and in-
coming migration from the neighboring locations. For the invader to be able to spread,
this migration flow must exceed a certain minimum value. In the present paper, we con-
sider qualitatively similar situation with two major differences: (a) the invader migration
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flow is due to a human mediated transportation and (b) there is a possibility to control this
flow and make it smaller than the minimum value required for the invader to spread.

The structure of the paper is the following. In Sections 2 to 5, we describe the model
and formulate two major problems: determining optimal allocation of resources for the
given set of invaded lakes, and determining optimal set of invaded lakes where the inva-
sion is to be stopped. These two problems are considered in Sections 6 and 7. The Appen-
dix contains technical details, including derivation of several formulas used in the main
text, description of numerical techniques of solving the related optimization problems, and
estimates of the model parameters for zebra mussels from available data in the literature.

2. The model

2.1. Individual lake dynamics and the Allee effect

For the invader population size p in a lake, we use the classical differential equation
population model (Taylor and Hastings, 2005)

dp

dt
= F(p) + Win − Wout, (1)

where Win and Wout are the incoming and the outcoming flows, respectively, and F has
the form shown in Fig. 1a. F(p) is negative below the Allee threshold pA and positive
above it until the population reaches its carrying capacity K . The exact functional form is
not important for our analysis. However, we shall assume that the following is satisfied:

• F(p) is differentiable for p ≥ 0;
• F(p) has three zeroes F(0) = F(pA) = F(K) = 0, 0 < pA < K , a minimum Fmin =

F(pM), 0 < pM < pA, and a maximum Fmax = F(pT ), pA < pT < K ,
• F(p) is monotonic on all three intervals 0 ≤ p < pM , pM < p < pT , p > pT .

We denote Fmin = F(pM) < 0 and Fmax = F(pT ) > 0. A typical example of such a
function is cubic polynomial

F(p) = Rp(p − pA)

(
1 − p

K

)
(2)

Fig. 1 (a) Typical form of F(p) for Allee dynamics; (b) Rescaled function and argument,
f (u) = F(Ku)/Fmax, u = p/K .
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with pT and pM given by the critical points

pT = K + pA + √
(K + pA)2 − 3KpA

3
,

pM = K + pA − √
(K + pA)2 − 3KpA

3
= KpA

3pT

.

If pA � K , which is typically the case then

pT ≈ 2K

3
, pM ≈ 1

2
pA, Fmax ≈ 4

27
RK2.

For a system of N lakes, each lake may have different carrying capacity Ki .

2.2. Invader flow between lakes and gravity models

We consider a system of N lakes with trailer boat traffic between them. We assume each
boat that has been immersed into an invaded lake, and then has been transported to another
lake, on average can carry a certain number of invader organisms η. The actual number
of invaders picked up at the first lake is assumed to be proportional to relative invader
density, that is to the proportion of the carrying capacity

ui = pi

Ki

.

For each pair of lakes, we assume known the mean number of boats per unit time trans-
ported from lake j to lake i, Tij . Then the flow of propagules from lake j to lake i is
ηTijuj . It is convenient to set Tii = 0, then the incoming flow for the lake i is

Win,i = η

N∑
j=1

Tijuj , (3)

and the outcoming flow is

Wout,i = η

N∑
j=1

Tjiui . (4)

In practice, the coefficients Tij are difficult to measure because for N lakes there are
N(N − 1)/2 connections. However, it appears that in many economical and geographical
problems the set of connections between the nodes of a transportation network can be
reasonably approximated by the so-called gravity models (Sen and Smith, 1995), where
it is assumed that

Tij = miMjφ(dij ), i �= j, Tii = 0,

where mi characterize “attractiveness” of a network node, Mi its repulsiveness, and dij is
the distance between nodes i and j . Then it is necessary to determine only 2N parameters
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mi , Mi , and usually a few parameters related with φ(d). In most practical cases, φ(d) is
chosen to be either exponential

Tij = miMj exp(−βdij ), (5)

or power law,

Tij = miMj(dij /d0)
−γ . (6)

The specific choice of φ(d) depends on the data—how fast the flow decays with the
distance. Examples of extracting the gravity model coefficients from invasions data can
be found in (Buchan and Padilla, 1999; Bossenbroek et al., 2001; MacIsaac et al., 2004).

For the sake of simplicity, in numerical experiments below, we assume that mi = Mi ,
and hence, the transportation matrix is symmetric, Tij = Tji .

2.3. Control of invader flows

To reduce the amount of the invader, it is possible to wash boats at infected lakes after
use, at uninfected lakes before use, or both. The result of washing can be described by a
factor between 0 and 1 that shows how the number of propagules diminish after washing.
Let the cost of washing one boat at the lake i before boat use be si , and after boat use be
xi . If cost equals zero, then there is no corresponding boat processing. It is clear that it is
not reasonable, e.g., to wash boats before usage at already invaded lake, at least in case of
a single invader. Nonetheless, to simplify notation it is convenient to consider both types
of treatment at each lake. Below we shall see, that the optimal values of these redundant
costs is zero, since they do not influence the invader flows.

The cost of washing may depend on its duration, or on the amount of the disinfectant
used and so forth. We assume that the proportional reduction of carried invader organisms
is related to the expenses as exp(−κxi) or exp(−κsi), respectively (Potapov et al., 2007).
The exponential dependence has been chosen because the result of two successive inde-
pendent washings with costs xia and xib is equivalents to a single treatment with the cost
xia +xib . The amount of the propagules transported by one boat from lake j to lake i after
the washing diminishes from η to η exp(−κxj − κsi), and the incoming flow for the lake
i becomes Win,i = η

∑
j e−κsi Tij e

−κxj uj .
We assume that at the washing checkpoints it may be hard to distinguish boats travel-

ing from invaded to uninvaded lakes from all other boats, and, therefore, it is necessary
to process all boats departing from or arriving to a certain lake. However, the overall traf-
fic from invaded to uninvaded lakes we assume known. This allows us to estimate the
necessary intensity of boats treatment.

Let us denote the number of boats arriving per unit time at lake i by Ai , and the number
of boats leaving lake i per unit time by Di ,

Ai =
N∑

j=1

Tij , Di =
N∑

j=1

Tji .

Therefore, the total control cost per unit time at lake i is Dixi + Aisi .
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2.4. The optimal control problem

Bioeconomic analysis uses either maximization of total present benefits or minimization
of present costs. In our case, we assume that uninvaded lakes are the sources of benefits,
and the invader reduces the amount of these benefits, or produces negative benefits, or
losses. We denote the losses per unit time at fully invaded lake i by gi . For partially
invaded lake (pi < Ki ), we assume that the losses are gipi/Ki . The control costs are
introduced in the previous section, hence, total cost per time for the whole lake system is

E(t) =
N∑

i=1

(
pi(t)

Ki

gi + Aisi(t) + Dixi(t)

)
. (7)

Finally, we come to an optimal control problem: find functions xi(t), si(t), which
minimize the total discounted cost

J =
∫ ∞

0
e−ρDtE(t) dt, (8)

where ρD is the discount rate, and pi(t) = Kiui(t) satisfy

dpi

dt
= F(pi) + η

(
e−κxi

N∑
j=1

Tij e
−κxj

pj

Kj

− Di

pi

Ki

)
.

3. Nondimensionalized model

It is more convenient to study a nondimensional model. Typically, it contains only a few
dimensionless parameters that are combinations of the original dimensional ones. Some
of the dimensionless parameters may appear to be very small or very large, which also
simplifies the studies.

Let us introduce two parameters, the maximum possible invader flow within the whole
lake system Wmax and the total boat traffic within the lake system Ttot,

Ttot =
N∑

i,j=1

Tij , Wmax = ηTtot. (9)

We expect that the flow will be small compared to the maximum possible growth rate
Fmax. Based on scalings we introduce a small parameter

ε = Wmax

Fmax
.

Another small parameter arises from considering time scales. The ecological part of our
bioeconomic model, which we now consider, has its characteristic time scale related to
carrying capacity and the maximum growth rate: tK = K/Fmax. However, our problem
has two other time scales. One is tY = 1 year, which is typical time scale for lifetime of
many invaders and also a natural time unit in economical and financial applications. The
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other is tD = ρ−1
D , the inverse of the discount rate, which shows how far into the future

our planning of control and optimization extends. As we shall see below, a typical case is
tK � tY � tD , and hence, there is a small dimensionless parameter given by

δ = tK

tY
= K

tY Fmax
.

We need to use the same time scale both in ecological and bioeconomic part of our model,
and we choose it to be tY .

Population dynamics We nondimensionalize (1) taking for the new variable the popu-
lation in proportion to carrying capacity u = p/K , rescaling F and introducing f (u) =
F(Ku)/Fmax, and introducing dimensionless time t ′ = t/tY relative to the scale tY . This
yields

δ
du

dt ′
= f (u) + ε(win − wout), (10)

where win = Win/Wmax, and wout = Wout/Wmax. The new nonlinear function f (u) has
maximum fmax = 1 at u = uT = pT /K , a minimum fmin at u = uM = pM/K , and zeroes
at u = 0, uA, and 1, where uA = pA/K , Fig. 1b. As described above, we assume uA � 1,
which allows us to simplify some expressions. For example, in case of cubic function
F(p) (2), we obtain

f (u) = 27

4
u(u − uA)(1 − u), uM ≈ 1

2
uA, uT ≈ 2

3
, fmin ≈ −27

16
u2

A.

Since K may be different for each lake, small parameters ε and δ also may vary with
the lake. However, in the subsequent analysis, it is important that they are small, while
specific value is not important. To simplify considerations, we shall assume these para-
meters equal for each lake. However, all formulas can easily be generalized for the case
of lake-dependent parameters.

Invader flow Defining the dimensionless flow rates

τij = Tijη

Wmax
= Tij

Ttot
,

we observe from (9) that
∑

ij τij = 1, and hence 0 ≤ τij < 1. Thus, τij is interpreted as the
proportion of the total possible flow between lakes that goes from lake i to lake j . Now
the expressions for normalized flows are

win =
N∑

j=1

τijuj , wout =
N∑

j=1

τjiui . (11)

Control and costs The natural scale for the control expenses per boat x, s is the control
efficiency κ , therefore, it is convenient to introduce dimensionless costs

x ′ = κx, s ′ = κs.
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The flows of arriving and departing boats we normalize by the total boat traffic Ttot, then

ai =
N∑

j=1

τij , di =
N∑

j=1

τji, Ai = Ttotai, Di = Ttotdi.

Then

E =
N∑

i=1

(
uigi + Ttot

κ
ais

′
i + Ttot

κ
dixi

)
= E0

N∑
i=1

(uig
′
i + ais

′
i + dix

′
i ), (12)

where E0 = κ−1Ttot is the loss rate scale factor and g′
i = κgiT

−1
tot are the dimensionless

losses at lake i. Finally, in the integral (8), we need to make a change to dimensionless
time t ′ = t/tY , which introduces financial scale for total costs J0 and dimensionless dis-
counting factor ρ,

J0 = TtottY κ−1, ρ = ρDtY .

If we introduce E′ = E/E0 and J ′ = J/J0, this does not change the conditions for the
minimum of total discounted costs.

The dimensionless problem Eventually, we come to the following dimensionless opti-
mal control problem: find x ′

i (t
′) and s ′

i (t
′) that minimize

J ′ =
∫ ∞

0
e−ρt ′E′(t ′) dt ′, E′(t ′) =

N∑
i=1

(uig
′
i + ais

′
i + dix

′
i ), (13)

where ui(t) satisfy

δ
dui

dt ′
= f (ui) + ε

(∑
j

e−s′
i τij e

−x′
j uj − uidi

)
≡ Φi(u,x′, s′). (14)

Below, we omit primes for brevity.

4. Critical flow

We start analysis of the model (10) by observing that provided ε(win −wout) is sufficiently
small and the initial lake population is also small, then the invader population in the lake
will remain small (see also Keitt et al., 2001).

Proposition 1. (1) If the net invader flow εw, w = win − wout, is smaller than the
maximum rate of population decline |fmin|, and the population level is initially small,
u(0) < uM , then the invader population u(t) remains below uM for all t > 0. (2) If the net
invader flow is large enough, εw > |fmin|, the lake will eventually be invaded regardless
of the size of initial invader population.
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Proof: (1) The proof relies on the fact that u(t) is a solution of an ordinary differential
equation with bounded right-hand side, and hence has to be a continuous function. Let us
assume that for some t2 u(t2) > uM . Since u(0) < uM , due to continuity there has to be
a moment when u(t) takes the value uM and is increasing. That is there must be such t1
that u(t1) = uM and du/dt (t1) ≥ 0. On the other hand

δ
du

dt
(t1) = f (uM) + εw = −|fmin| + εw < 0.

Hence, such t1 cannot exist, and this contradiction proves that u(t) < uM for all t > 0.
(2) Now let us consider the second part of the proposition. According to the condition

εw > |fmin|, there exists positive constant c = min0≤u≤1(f (u) + εw) > 0. Then

δ
du

dt
= f (u) + εw ≥ c > 0, u(0) ≥ 0.

Using the properties of definite integral, and assuming that we consider t such that
u(t) ≤ 1,

δ
(
u(t) − u(0)

) = δ

∫ t

0

du

dα
dα ≥

∫ t

0
c dα = ct, 1 ≥ u(t) ≥ u(0) + ct

δ
. (15)

Therefore, at some moment t3 ≤ δ/c, there must be u(t3) = 1, and hence the lake will be
fully invaded. Note that when u > 1 f (u) may take values less than fmin, and we cannot
extend our analysis for u greater than 1. �

Proposition 1 shows that the value |fmin| plays critical role in the invasion process
under Allee effect. For this reason, let us introduce normalized critical flow or critical
invader traffic

τ0 = |fmin|
ε

. (16)

Then w = win − wout > τ0 guarantees invasion.
If we substitute explicit expressions for the invader flow into the condition ε(win,i −

wout,i ) < |fmin| = ετ0, which guarantees the absence of invasion for the lake i, we obtain

∑
j

e−si τij e
−xj uj − ui

∑
j

τji < τ0, ui < uA. (17)

Note that in case
∑

j e−si τij e
−xj uj − uA

∑
j τji > τ0, when inequality sign in (17) is

reversed, the lake i will eventually be invaded.
To obtain the critical flow in terms of arriving boats per year, we have to multiply τ0

by Ttot,

T0 = τ0Ttot. (18)

In (Bossenbroek et al., 2001), this has been called “colonization threshold”. It is natural
to assume that this value has to be the same for all lakes.

Estimates of the model parameters for one of harmful aquatic invader are shown in
Table 1; see the Appendix for details.
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Table 1 Estimates of the model parameters for zebra mussels, see Appendix for details

Parameter Description Estimate for zebra mussels

K carrying capacity 109

Fmax maximum growth rate 1012 year−1

tK = K/Fmax characteristic time of growth 3 × 10−4 year
δ = tK/tY time factor 3 × 10−4

uA Allee threshold 10−7

Ttot total boat traffic 105

T0 invasion threshold 850 boats/year
τ0 critical flow <10−2

ε flow factor 10−8

κ control efficiency 1 boat/$
ρD discount rate ∼0.05 year−1

g scale for industrial losses 105 $/lake/year

5. Bioeconomic analysis and steady states

5.1. Dynamic optimal control task

The standard way to solve the above minimization problem is to use Pontryagin maximum
principle (Pontryagin et al., 1962). It is convenient to use vector notation. Let us denote
by u, x, s vectors of the lake state and controls, respectively. In this notation, (14) can be
written as

du
dt

= δ−1Φ(u,x, s).

Now we introduce the vector of adjoint variables or shadow prices μ =(μ1, . . . ,μN), and
the Hamiltonian

H = −E(t) + δ−1(μ · Φ).

According to the maximum principle, μ should satisfy

dμ

dt
= ρμ − ∇uH = ρμ + g − δ−1∇u(μ · Φ).

The optimal controls xi , si are ones that maximize H at each moment of time.
General solution of this optimal control problem is complicated. However, it is known

that for infinite horizon problems the solution must end at a steady state (Kamien and
Schwartz, 1991), which often is a fixed point (Carlson et al., 1991); that is for t → ∞
du/dt → 0, dμ/dt → 0, and hence u → u∗, x → x∗, s → s∗. The controls xi and si also
tend to some constant values.

The dynamics then consists of a transient period tTr, during which the state and controls
converge to the stationary values, and asymptotic period, during which u ≈ u∗, x ≈ x∗,
s ≈ s∗. Therefore,

J = JTr + J∞ =
∫ tTr

0
e−ρtE(t) dt +

∫ ∞

tTr

e−ρtE(t) dt ≈ JTr + E∗ρ−1e−ρtTr .
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Fig. 2 When the incoming flow is small, the equation f (u) + εw has three roots, uZ < uM ,
uM < uU < uA , and uI > 1. uZ and uI are stable and correspond to uninvaded and invaded steady
state. uU is unstable. When the incoming flow increases, uZ and uU merge at uM and disappear. Only uI

remains, and invasion becomes inevitable.

Below we shall assume that control can prevent invasions from the invaded lakes (u
close to 1) to uninvaded ones (u < uM ). Then there should be no long transients in the
system, related to long establishment period for flows close to critical one τ0. Uninvaded
lakes can be considered as already being in the asymptotic states. For the invaded lakes,
the dynamics practically does not depend on control and external flows, it is determined
by f (u), which is of the order 1. Therefore, the transient time tTr ∼ δ, and hence

J ≈ O(δ) + E∗ρ−1e−ρtTr ≈ E∗ρ−1

provided δ � ρ−1. As we have stated in the previous section, it is reasonable to assume
that δ is a small parameter, so this assumption holds. Then minimization of J can be
approximately replaced by minimization of E∗ with respect to the choice of u∗, x∗, s∗.
That is, we replace dynamic optimal control problem by a static one.

5.2. Simplification: static optimal control task

Instead of solving the dynamic optimal control problem, we can solve a static control
problem, that is to assume that ui , xi , and si do not depend on time, and to find their
values that minimize E under condition that dui/dt = 0. This allows us to replace the
search for minimum of functional J under differential constraints by searching minimum
of a function under usual algebraic constraints. The latter problem is much simpler than
the time-dependent one.

In the absence of external flows, the equation δ du/dt = f (u) = 0 has three roots. The
same situation remains when the external flow w = ε(win − wout) > 0 is small, see Fig. 2.
There are also three roots, uZ , uU , uI , 0 < uZ < uM , uM < uU < uA, uI > 1. The root
uU is unstable, and we shall not consider it. The roots uZ and uI correspond to uninvaded
and invaded state of the lake, respectively. When the incoming flow exceeds critical value
|fmin| = ετ0, the roots uZ and uU disappear, and only the invaded steady state remains.

The form for f (u) means that uZ ≈ 0 and uI ≈ 1. Specifically, |f ′(1)| being of order 1
means that uI = 1+O(ε), and we know that uZ < uA, which is small. We also can neglect
the outcoming flow and set wout = 0. For invaded lakes with u = uI , both win and wout

are not important because they can only introduce perturbations to uI of the order ε. For
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uninvaded lakes, when u = uZ � 1, the outcoming flow wout ∼ uZ is negligible compared
to the incoming flow from the invaded lakes.

Substituting the expression (11) for win into the condition of Proposition 1 for invader
flow ε(win − wout) < |fmin| = ετ0 and neglecting wout, we obtain the condition on the
incoming boat traffic for an uninvaded lake i:

N∑
j=1

e−si τij e
−xj uj ≤ τ0. (19)

After these simplifications, we come to the following problem.

Static optimal control problem Find the optimal lake system configuration {ui} and the
value of controls at each lake {xi, si} that minimize E (13) under the following constraints:

(1) For each lake, either ui = 1, or ui = 0 and (19) holds. Both cases can be combined in
a single formula

(1 − ui)

N∑
j=1

e−si τij e
−xj uj ≤ τ0, i = 1, . . . ,N. (20)

(2) For the originally invaded lakes ui = 1.
(3) xi ≥ 0, si ≥ 0, i = 1, . . . ,N .

It is convenient to split it into two subproblems:

Problem 1 (Optimal control allocation in space for a given configuration of lakes). Let
us set up a certain configuration of invaded and uninvaded lakes U = {u1, . . . , uN }, where
each ui = 0 or 1, according to conditions 1 and 2. For this configuration, U find xi , si

minimizing the control costs

EC(U) = min
x,s

N∑
i=1

(aisi + dixi) (21)

under constraints 1 and 3.

Problem 2 (Optimal stopping configuration). Among all configurations U satisfying the
constraint 2 find one which minimizes

Emin = min
U

(
EC(U) +

N∑
i=1

uigi

)
. (22)

The configuration U giving minimum to (22) and the respective xi , si are the solution
to the full problem. The proof is straightforward: if we assume the opposite, we obtain a
contradiction.

The relation (20) immediately allows us to obtain the following statement.
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Proposition 2. At the invaded lakes optimal si = 0, at the uninvaded lakes optimal xi = 0.
(As we have mentioned above, this proposition is intuitively obvious: it is useless to pre-
vent invader flow into already invaded lakes, as well as to process boats after use in an
uninvaded lake.)

Proof: Since for the uninvaded lakes ui = 0, the corresponding xi do not appear in the
conditions (20). Therefore, for these x values, we have minimum in (21) only under non-
negativity constraint, which is xi = 0. Similarly, for the invaded lakes uk = 1, there are no
conditions (20), hence for the corresponding sk also minimum is reached at sk = 0. �

6. Optimal control allocation for fixed configuration of invaded lakes (Problem 1)

The numerical technique for solving optimization problem with inequality constraints is
described in the Appendix. The algorithm is quite fast, and the problem can be solved for
very big lake systems. Below there is example for a system of 1,600 lakes. The actual
pattern of spatial control allocation depends on many factors, such as the lake system
structure, configuration of the invaded part, dependency of the connections τij on distance.
To demonstrate the major features of the solution, we present results for several model
situations.

We consider a number of identical lakes located at the nodes of one- or two-
dimensional lattice. This demonstrates the features more clearly, without random dis-
tortions. We assume that invaded and uninvaded lakes are separated by a certain bound-
ary, that is, they do not alternate. The connection strength has been chosen according to
the gravity models (6) and (5). The parameters of the gravity models have been chosen
mi = m = 0.3, T0 = 10−3, β = 0.5, d0 = 1, γ = 2.

In the first example, N = 40 lakes were located at the same distance h = 1 from
each other along the line. This gives τ0 = 9.2 × 10−5 for power gravity model and
τ0 = 9.6 × 10−5 for exponential gravity model, respectively. Examples of optimal distri-
bution of control in space for one-dimensional lake systems are shown in Fig. 3. The left
half of the lakes with the coordinates ri < 20 (to the left of the dashed line) are invaded,
so for r < 20 x ≥ 0, s = 0, and for r ≥ 20 x = 0, s ≥ 0. Thick and thin lines show xi and
si for each lake, respectively. Panels show the result for exponential (a) and power-law
(b) gravity model. One can see that the intensity of control monotonically decreases with

Fig. 3 Examples of optimal control allocation in space for the system of linearly ordered lakes and con-
nections Tij for (a) exponential gravity model (5), (b) power-law gravity model (6). See Section 6 for
parameters and details.
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Fig. 4 Examples of optimal control allocation in space for identical lakes forming 20 × 20 lattice. Para-
meters are the same as in Fig. 3. The connections are formed according to exponential gravity model (5).
The invaded lakes are shown as dark circles, the uninvaded lakes as light circles, the area of squares is
proportional to intensity of control at the given lake. See Section 6 for details.

Fig. 5 Examples of optimal control allocation in space for identical lakes forming 40 × 40 lattice. Para-
meters and notation are the same as in Fig. 4. The proportion of invaded lakes is the same as in Fig. 4a,
however, the size of the invaded region is greater, and curvature of the interface boundary is smaller. The
connections are formed according to (a) exponential gravity model, same as in Figs. 4a, and (b) power-law
gravity model. See Section 6 for details.

the distance from the invasion boundary. The size of this control region depends on the
rate of decay of traffic with the distance. For the same maximum intensity m2 exponential
model gives significantly smaller size of the region.

Examples for controlling two-dimensional grids of lakes of the size 20 × 20 and 40 ×
40 are shown in Fig. 4 and Fig. 5, respectively. The lakes are located in the points of
regular grid with step 1. Invaded lakes are shown as dark circles, uninvaded—as light
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circles, and relative intensity of control at each lake is shown by the area of the overlaying
square.

Fig. 4 shows the same feature as one-dimensional distribution—the most intense con-
trol is at the invasion front, and it decreases with the distance from the front. However,
two-dimensional distribution brings one new component, the shape of the invaded re-
gion. When the interface boundary between invaded and uninvaded regions is not straight
(panels a, d), then the control concentrates in convex part with the smaller area, while in
the concave one the control is comparatively small. When the configurations of invaded
and uninvaded lakes are symmetric (panel b), the control is close to symmetric as well.
However, small deviation from symmetry (panel c), because the lakes at the diagonal are
invaded, makes control visibly dominating within the smaller area.

Fig. 5 shows an example of a very large lake system of 1,600 lakes, for which the
optimal spatial control allocation can be obtained. Here, the proportion of the invaded
lakes is the same as in Fig. 4a, but size of the invaded region is greater, and the curvature
of the interface boundary is smaller. This example also shows how the optimal control
distribution is influenced by spatial dependency of the boat travel intensity on the distance.
For exponential dependency, when only local contacts are intense, the control is localized
in the vicinity of the boundary. In case of power-law dependency, it is necessary to control
the bigger area, especially in the invaded region.

7. Optimal stopping configuration (Problem 2): lake clusters

7.1. Configurations along most probable invasion path

To find the optimal configuration for invasion stopping, we need to vary both the number
of invaded lakes and the location of invaded lakes within the lake system. This makes
analysis of all possible invasion configurations U a complicated task because the number
of configurations grows with N as 2N , and for each configuration, it is necessary to solve
an optimization problem. If we assume that 106 is the maximum number of configurations
that can be analyzed in practice, then direct searching through all possible configurations
is limited by cases of N < 20.

However, different configurations arise with different probabilities in course of in-
vasion development. Studies of invasion histories show that the invader usually spreads
along directions of the most active traffic from the invaded lakes (Buchan and Padilla,
1999; Bossenbroek et al., 2001; MacIsaac et al., 2004), that is along connections with
the biggest τij . Usually the number of such most probable invasion paths is much smaller
than the total number of possible configurations. Therefore, it seems reasonable to study
only configurations along these paths: it simplifies the task considerably and at the same
time must cover all important configurations.

The idea to look at the sequences of configurations instead of analyzing each con-
figuration separately has one almost obvious consequence. Suppose that the connection
matrix τij describes a clustered system of lakes. Namely, there are groups of lakes such
that connections inside each group are significantly stronger than those between the lakes
from different groups. In this case, a typical invasion path is as follows: first invasion
spreads within one group, then it jumps to another group and spreads within it, and so on.
Since connections between the lakes in a group are strong, we can expect that stopping the
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Fig. 6 Configurations of identical lakes used in examples on optimal spatial stopping configuration. Cir-
cles show lakes, lines—nonzero connections between them. (a) N lakes connected to each other with the
same connectivity T . (b) N = N1 + N2 lakes forming two clusters; all nonzero connections are equal T .

invasion within the group should require more resources than preventing invasion spread
between weakly connected clusters. Below we present two simple models that illustrate
this idea, and show a simple criterion, when it may be optimal to abandon partially in-
vaded group and switch to protecting other groups.

7.2. Two simple examples

7.2.1. Unstructured lake system (Model U)
We consider a uniform system of N lakes (Fig. 6a). Each lake is identical and connected
to each other with the same strength; that is τii = 0, τij = T , di = di = a = (N − 1)T ,
with the losses per lake gi = g. We assume that T > τ0, and under no control all the lakes
become invaded. Solution of this problem is presented in the Appendix, and the total cost
of stopping the invasion when M lakes are invaded is

E(M) = min{M,N − M}a ln

(
MT

τ0

)
+ Mg.

Optimal M corresponds to the minimum of E(M) for M ≥ M0, where M0 is the number
of originally invaded lakes. There is a critical losses value

g∗ = a ln

(
(N − 1)T

τ0

)
.

One can observe a qualitative difference in the behavior of E(M) for g < g∗ and g ≥ g∗:
in the former case, there is an internal maximum of E(M) for some 0 < M < N , while in
the latter case maximum of E(M) is reached at M = N , see Fig. 7. Therefore, we obtain
the solution for the optimal invasion stopping problem.

(a) If the invasion losses are big, g ≥ g∗, try to stop the invasion at the current M = M0

for any M0.
(b) If the invasion losses are small, g < g∗, there exists a critical invasion level M∗, such

that E(M∗) = E(N), see Fig. 7. If M0 < M∗, stop the invasion at M = M0, otherwise,
the optimal policy is no control at all.

7.2.2. Clustered lake system (Model C)
We consider another system of identical lakes (Fig. 6b). All connections have the same
strength T , but they form two clusters, containing N1 and N2 lakes, respectively, and only
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Fig. 7 Total cost of invasion stopping after M lakes being invaded for configurations in Fig. 6a (panels
a, b) and b (panel c). (a) Invasion losses per lake are greater than the critical value g∗, optimal is to stop
at the current M value for any M . (b) same lakes configuration, but g < g∗. There is a critical value M∗
above which optimal is no control at all; (c) There are two clusters of lakes and small invasion losses,
invasion of each clusters produces pattern similar to panel (b). There are two critical values, M1∗ and
M2∗, corresponding to the beginning of invasion of each cluster.

one connection between the clusters. Let us denote the clusters by C1 and C2, the lake
in C1 that is connected to C2 by L1, and the lake in C2 that is connected to C1 by L2.
Within each cluster, all lakes are interconnected like in the previous example, that is, all
lakes in C1 except L1 have N1 connections, L1 has N1 + 1 connection, all lakes in C2

besides L2 have N2 connections, L2 has N2 + 1 connections. In other words, there is a
single “bridge” connection between the clusters. If one of the clusters is invaded, the only
way for the invader to invade the second cluster is through this bridge.

Let us consider the following invasion scenario:

(1) one lake in the cluster C1 is invaded;
(2) the invasion spreads inside C1, and the last invaded lake is L1;
(3) the invasion jumps to the lake L2 in the second cluster C2;
(4) the invasion spreads within C2.

At each stage, we estimate the control costs and total cost of invasion stopping.
The calculations of the stopping costs again can be found in the Appendix. The impor-

tant difference with the previous case is that pure control costs (without accounting for
the losses g) have a minimum at M = N1, when the invasion jumps from one cluster to
the other, and only one connection has to be controlled. If g is small enough, then E(M)

has a minimum, too.
The existence of this minimum implies that there are two critical invasion levels, M1∗

and M2∗, see Fig. 7c. Then the optimal control rules are: if M0 < M1∗, then stop the
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Fig. 8 Model configuration of 50 different lakes randomly located without (a, c) and with (b, d) spatial
clustering. Panels (a) and (b) show cots of invasion stopping after M lakes have been invaded along 10
probable invasion paths for configurations. Panels c and d show the relative lake size and location, the first
invaded lake (empty circle), and one of the probable invasion paths.

invasion at M0, otherwise retreat from the first cluster and protect the second one from
the invader. If the second cluster is invaded, then stop if M < M2∗, otherwise, do nothing.

If there are a number clusters, then there may be several critical values, depending on
gi and on actual structure of connections.

7.3. Model random configurations of lakes

For the next step, we used a more complicated model. We generated two lake systems,
containing N = 50 lakes of two sizes: many small lakes and a few big ones with 4 times
bigger size. The connections between lakes were proportional to the product of their sizes,
and the losses at each lake were proportional to its size. The lakes are located randomly,
either as a single cluster, or four spatially separated clusters. One of the lakes has been
chosen for the invader source. The subsequent invader spread has been random, but the
probability to invade next lake was proportional to the total invader flow into the lake.
Fig. 8 shows the schemes of lakes allocation, one example invasion path, and cost of
invasion stopping at each stage for 10 different paths.

The effect of spatial clustering is quite obvious, there is similarity between Figs. 8b
and 7c. Therefore, like in the simple model, it is more efficient to stop invader between
the clusters.

Splitting of a lake system into clusters may also help to make the problem of optimal
invasion stopping tractable. First, one can consider the clusters as bigger units, and solve
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the stopping problem for them. After the cluster configuration has been selected, the ac-
curate solution can be obtained. This may be a way to find a practical solution reasonably
close to the optimum and in a reasonable time.

8. Conclusion

The main results of the paper are the following.

• We have derived the model for invasion spread and control in a lake system, and for-
mulated the optimal control problem (Sections 2 and 3). We present estimates of the
model parameters for a harmful aquatic invader, zebra mussel (Appendix).

• Basing on the properties of infinite horizon optimal control problems and the existence
of the critical flow in presence of Allee effect (Section 4), we have derived the constraint
optimization problem for optimal invasion stopping (Section 5). The latter splits into
problem of optimal spatial resource allocation for given configuration of invaded lakes
(Problem 1) and problem of optimal invasion stopping or choice of optimal stopping
configuration (Problem 2).

• For Problem 1, we developed an efficient numerical algorithm and applied it to a num-
ber of model lake configurations. The most intensive control is required at the boundary
between invaded and uninvaded lakes. Spatial control allocation strongly depends on
decay of boat transportation intensity with the distance between the lakes (Section 6).

• The complexity of Problem 2 exponentially grows with the number of lakes, and for big
lake systems, it cannot be solved exactly. However, if the lakes form clusters, then the
boundaries between clusters can be optimal places for stopping the invasion. As model
examples show, if several lakes within a cluster are invaded, it may be better to abandon
the cluster and to concentrate on prevention of invasion of other clusters (Section 7).

The last point is in a good agreement with the 100th meridian initiative (Mangin, 2001)
related with preventing spread of Zebra mussels to the basins of major western rivers in
US. The eastern and some central rivers and lakes are already highly invaded. Due to
Rocky Mountains, the connections between eastern and western water systems are weak,
and prevention of zebra mussels invasion spread into the west appears to be the optimal
strategy.
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Appendix

A.1. Characteristic parameter values: zebra mussels as an example

The model described involves a number of parameters. Their exact values may depend on
specific situations. However, we consider some typical values for a typical aquatic invader
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that spreads with the boat traffic and has Allee effect, the zebra mussel (ZM) (Leung et
al., 2004) (Table 1).

Zebra mussels are small mussels with characteristic stripes on the shell (Nicholis,
1996). Mean adult size is about 2 cm. They live on hard substrate in relatively warm water
mainly at the depths not exceeding 10 m. In many aquatic systems of Europe and North
America, they settle in huge numbers, causing negative or even damaging consequences
to industry and aquatic ecosystems. They clog water intakes and water processing facili-
ties. When foraging they intensively filter water diminishing the amount of plankton and
increasing the transparency of water. Both these effects cause strong perturbations for the
ecosystems. Each female can produce up to 50,000 offspring, so quite soon after popula-
tion establishment the mussels cover practically all suitable surfaces. They can colonize
shells of other mussels causing their death of starvation, boats, and ships immersed in the
water for a long time, macrophytes and so on. And there are no predators, which are able
to control their populations in efficient way. We attempt to determine parameters of our
model for ZM using available data in the literature.

Carrying capacity K It depends on the proportion of hard substrate at the lake bottom
at the depths of several meters. Densities of ZM colonies at optimal conditions in the
literature vary from ∼104 to ∼106 per square meter (Nicholis, 1996). Characteristic size
of a lake which is of interest for boating and fishing is ∼103 m, and its area ∼106 m2.
Assuming that only 10% of the bottom is suitable, we obtain K ∼ 109.

Maximum growth rate Fmax The actual function form of F(p) for zebra mussels is un-
known, so we try to estimate this value indirectly with the help of available physiological
data and typical models of population growth. We approximate

Fmax = F(pT ) ≈ max
p

(
F(p)

p

)
pT ,

which is estimated from data by

max

(
p/p

t

)
K

2
,

where p/p

t
is the maximum per capita growth rate estimated from the literature, and

pT ≈ K/2 is a good approximation of the population size with maximum growth rate
for most common population models. However, even if one takes pT = 0.01K , the main
conclusions remain the same.

Zebra mussels on average maturate during one year, adults spawn up to 4 times a
year (Nicholis, 1996). Average lifetime is 2–3 years. Therefore, it is natural to analyze
population increase during one mussel lifetime, and take t = 3 years.

p/p in this case gives maximum possible number of offspring produced by one adult.
It is known that on average one female produces ∼5×104 eggs. The gametes are released
into water where fertilization occurs. There are no estimates of fertilization efficiency in
nature. Since 100% intersection of the gamete clouds is practically impossible, we assume
that about 50% of eggs are fertilized. Mortality during larval stage is small, while during
settlement it varies strongly, because survival depends on suitability of the bottom where
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settling occurs. We assumed 10% of bottom is suitable, which gives ∼90% mortality
during settling. Then one spawning results in about 2,500 offsprings. In 3 years, we may
expect 8 spawning events, so we may take p/p ∼ 2 × 104. During the same period, all
preexisting mussels must die, which gives mortality correction for (p/p)μ = −1, which
is negligible compared to the number of new mussels.

Combining these values we obtain

Fmax ∼ 2 × 104

3
× 1

2
× K ∼ 1012 year−1.

Characteristic time tK and parameter δ.

tK = K/Fmax ∼ 3 × 10−4 year

which gives

δ = K/(tY Fmax) ∼ 3 × 10−4, tY = 1 year.

Colonization threshold T0 has been estimated in (Bossenbroek et al., 2001) as

T0 = 850 boats/year.

Allee threshold uA The Allee effect arises because the mussels reproduce sexually,
males and females release gametes into the water where fertilization goes on. Since mus-
sels cannot move, to reproduce successfully, they must be located close enough to each
other (Pennington, 1985). Therefore, the critical population size depends not only on the
number of individuals, but on their location as well. There may be situations, when two
mussels located closely start a new population, and when several hundred evenly distrib-
uted over the lake go extinct. However, such extreme cases have a little probability, and
we need a “typical” estimate. It seems natural to base upon the flow of mussels transported
by boats. It is known that the main way of spread is transportation of macrophytes with
several attached mussels (Johnson et al., 2001). It has been estimated that about 1% of
trailers carry weeds with mussels. Other sources give an estimate of average 2.2 mussels
per macrophyte, however, in a different situation (Horvath and Lamberti, 1997). Taking
a critical flow T0 ∼ 103 boats/year, we obtain that each year about 20 mussels must ar-
rive. Assuming that arriving adults can survive for 2 years, we come to a typical size of
population, which may start to grow: pA ≈ 40–50 individuals, or more roughly pA ∼ 102.

Flow factor ε Using simultaneously expressions for τ0 (16) and (18), we can write

τ0 = T0

Ttot
= |fmin|

ε
= 1

ε

|Fmin|
Fmax

or

ε = |Fmin|
Fmax

Ttot

T0
.

The estimates for Fmax ≈ 1012 year−1 and T0 ≈ 103 boat/year have already been given
above. The rough estimate for Fmin can be made from pA and life duration for zebra
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mussels. If we take a small population of the size near pM < pA ∼ 102, it will die out
during 1–3 years, which gives upper estimate for |Fmin| ∼ 102. The hardest problem is to
estimate the total boat traffic. According to (Buchan and Padilla, 1999; Bossenbroek et al.,
2001; MacIsaac et al., 2004), in Wisconsin there are 58,000 registered boaters, however,
only about 10% of boaters do long travels, including transfers of the boat from lake to
lake. Each boater can make several travels per year, and the lake system can cover several
states, so eventually it seems reasonable to estimate Ttot ∼ 105 boats/year, and in the case
of Wisconsin lake system, one obtains

ε ∼ 102

1012

105

103
= 10−8 � 1.

The estimate remains small even if we increase Ttot and |Fmin| 10 times each. ε seems to
be very small, however, the estimate for |fmin|, which is responsible for the possibility of
invasion, appears to be even smaller,

|fmin| = |Fmin|
Fmax

∼ 102

1012
= 10−10.

Critical traffic τ0 Using estimates for colonization threshold T0 and total boat traffic Ttot

we obtain dimensionless colonization threshold

τ0 = T0/Ttot ≈ 10−2.

However, numerical experiments show that for a lake system with the number of lakes
N > 10 typically all or almost all τij < 10−2, and invasion spread becomes impossible.
Typical τ0 values resulting in a spatially distributed control structure is of the order 10−4

or even less. We can conclude that either our estimate of Ttot may need correction, or the
estimate of T0 corresponds to flows that significantly exceed τ0 because for smaller flows
establishment time becomes too big. This question may need further research.

Bioeconomic parameters include discount rate ρD , losses per year for each lake gi ,
and the control efficiency κ . There are no exact data on the latter two parameters, so we
tried to make estimates from available data.

Typical value of ρD ∼ 0.05 year−1. Since tY = 1 year, the dimensionless discount rate
is also ρ ≈ 0.05, and our assumption for static problem δ � ρ−1 holds.

The losses due to the invasion have four major components.

(a) Industrial losses. In the case of zebra mussels, they are related with costs of cleaning
water treatment facilities. Some data are available from (O’Neill, 1997). For example,
the mean treatment costs per year for hydroelectric facilities are $83,000, fossil fuel
generating facilities $145,000, drinking water treatment facilities $214,000, nuclear
power plants $822,000. If we assume that each big lake has a drinking water treatment
facility, this gives a corresponding g component about 2 × 105 $/year.

(b) Private losses. Many houses near lakes have individual water intakes, which are sub-
ject to zebra mussels impact. However, there are no estimates for the related expenses.

(c) Ecological losses. Zebra mussels are filtering water very intensively for feeding. This
results in major changes in planktonic content, and hence influences food chains and
population structure of the lakes. Increasing water transparency causes changes in
macrophytes population. Corresponding gains and losses have not been estimated yet.
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(d) Recreational losses. They are related with ecological changes (important for fishing),
quality of the bottom, and beaches covered with zebra mussel shells, and water clarity.
No estimates are available at present, though corresponding techniques for (c) and (d)
are being developed by environmental economists.

So, at present, it is possible to make estimates only for big lakes with water treatment
facilities, and this gives the order of magnitude for g.

To make a rough estimates for the control part, we can use the fact that zebra mussels
in all stages almost instantly die after washing with 60°C (140 F) water. Therefore, a
treatment facility may be just like a car wash, and the costs may be comparable, say,
$3/wash. If we assume that the average efficiency of such a wash is about 90–95%, this
gives κ ∼ 1 boat/$, and exp(−3κ) ≈ 0.05.

Now, taking the example of Wisconsin lake system with Ttot ∼ 105, and g ∼ 105 $, we
can evaluate the scale of dimensionless losses and financial factors E0 and J0,

g′ = gκ

Ttot
∼ 1, E0 = Ttot

κ
∼ 105 $

year
, J0 = E0tY ∼ 105 $.

A.2. Optimization with inequality constraints: penalty function and numerical technique

For a general optimization problem (Gregory and Lin, 1992), find minF(u) under n re-
strictions

Φi(u) ≤ 0,

the solution u∗ satisfies

∇F(u∗) +
n∑

i=1

μi∇Φi(u∗) = 0,

where for each i either Φi(u∗) = 0 (point at the boundary of the domain of admissible u

values) or μi = 0 (internal point according to i-th criterion). So, to find a solution, it may
be necessary to try up to 2n different cases. For this reason, for n > 2 often a method of
penalty function is used. Let

P (x) =
{

Ax, x ≥ 0,
0, x < 0,

where A is big enough. Then the original problem is replaced by the problem of uncon-
strained minimization of

F(u) +
n∑

i=1

P
(
Φi(u)

) = min. (A.1)

If |∇F | � |∇P | = A, the solution of (A.1) is close to that of original problem.
This penalty function P (x) is nondifferentiable at x = 0, which may create problems

in practical applications. We used a sequence of functions G(x/ω), which converge to P
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as ω → 0 with A = ω−1. This allows to obtain very accurate solutions for ω small. We
used the penalty function

G(z) = z +
√

z2 + 1, G′(z) = 1 + z√
z2 + 1

.

The incoming invader flow to the lake

wi = exp(−si)

N∑
j=1

τij exp(−xj )uj , i = 1, . . . ,N.

We minimize

E =
M∑
1

dixi +
N∑

M+1

aisi +
N∑

M+1

G

(
wi − τ0

ω

)
.

The simplest way is to use gradient descending, then we need only the derivatives

∂E

∂xm

= dm − 1

ω

N∑
i=K+1

G′
(

wi − τ0

ω

)
exp(−si)τim exp(−xm), m = 1, . . . ,M,

∂E

∂sm

= am − 1

ω
G′

(
wm − τ0

ω

)
exp(−sm)

K∑
j=1

τmj exp(−xj ), m = M + 1, . . . ,N.

Minimizing is done iteratively with gradient descending: set x0, x = {x1, . . . , xM, sM+1,

. . . , sN } then

xn+1 = max
{
0,xn − γ∇E(xn)

}
.

The choice of γ is important for efficiency, but this problem is standard, and we shall not
discuss it here.

Most important was the fact that the convergence rate strongly depends on ω. For this
reason, we used a decreasing sequence of ω, first solve minimization problem for ω big,
then reduce ω, use the previous solution as initial guess, and find the new minimum, and
so on. This allowed us to combine fast convergence and reaching very small ω values
about 10−9, so the final solution after 30 ω-iterations has accuracy ∼10−6 or better.

A.3. Analysis of the Model U (unstructured lake system)

From symmetry, it follows that controls at all invaded lakes xi = x, and at all uninvaded
lakes si = s, then the functional to be minimized is

E = Max + (N − M)as + Mg,

where g are losses per lake due to the invasion. The flow restriction under control is

e−sMT e−x = τ0, s + x ≡ z = ln

(
MT

τ0

)
> 0.
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For fixed M, x and s can be easily found. Since the functional is linear in x and s, for
M < N − M x = z, s = 0, while for M > N − M x = 0, s = z. Combining both cases,
we obtain

E(M) = min{M,N − M}a ln

(
MT

τ0

)
+ Mg.

For M < N/2 E(M) is an increasing function. For M > N/2

dE

dM
= N − M

M
a + g − a ln

(
MT

τ0

)
,

which is a decreasing function of M , so the minimum of E′(M) is achieved for M = N .
Therefore, E(M) can be decreasing for M close to N if g is small. The critical value g∗
of g can be obtained from the condition that E(N − 1) = E(N), that is

a ln

(
(N − 1)T

τ0

)
+ (N − 1)g∗ = Ng∗, g∗ = a ln

(
(N − 1)T

τ0

)
.

A.4. Analysis of the Model C (clustered lake system)

At each stage of the described scenario, we estimate the control costs and total cost of
invasion stopping.

1. The cluster C2 does not participate in the estimates, for all lakes in C1\L1 di = ai =
a = (N1 − 1)T , dL1 = aL1 = N1T . The functional to be minimized is

E = Max + (N1 − 1 − M)as + aL1sL1 + Mg, (A.2)

and the flow constraints

e−sMT e−x = τ0, e−sL1MT e−x = τ0, s + x ≡ z = ln

(
MT

τ0

)
> 0.

Hence, sL1 = s, and like in the previous example, we have

x =
{

z, Ma < (N1 − M)a + T ,
0, Ma > (N1 − M)a + T ,

s = z − x,

E(M) =
{

Maz + Mg, Ma < (N1 − M)a + T ,
(N1 − M)az + T z + Mg, Ma > (N1 − M)a + T .

2. After L1 has been invaded, only the bridge connection is dangerous, that is, we have
to control the incoming traffic on L2(s), or outcoming traffic on L1(x), or both. Since
dL2 = aL2 = N2T ,

E = dL1x + aL2s + N1g,

e−sT e−x = τ0, s + x ≡ z = ln

(
T

τ0

)
> 0,

x =
{

z, N1 < N2,
0, N1 > N2

s = z − x,

E(N1) = min{N1,N2}T z + N1g.

(A.3)
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3–4. After L2 has been invaded, the invasion spreads within C2. To simplify consider-
ation, we again assume that controls at all invaded lakes are equal to x, at all uninvaded
lakes are equal to s, though there is no more complete symmetry between all invaded
lakes, and the resulting solution is only close to true optimum. (Accurate analysis is pos-
sible, however, it is very bulky and its results are very close to the expression presented
below.) Then a = d = (N2 − 1)T , N = N1 + N2,

E = (M − N1)ax + T x + (N − M)as + Mg, (A.4)

and the flow constraints

e−s(M − N1)T e−x = τ0, s + x ≡ z = ln

(
(M − N1)T

τ0

)
> 0,

x =
{

z, (M − N1)a + T < (N − M)a,
0, (M − N1)a + T > (N − M)a,

s = z − x,

E(M) =
{

(M − N1)az + T z + Mg, (M − N1)a + T < (N − M)a,
(N − M)az + Mg, (M − N1)a + T > (N − M)a.

Analyzing the overall E(M) dependency one can see, that pure control costs (with-
out g) have a minimum at M = N1, when the invasion jumps from one cluster to the
other. If g is small enough, then E(M) has a minimum too.
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